A Rigorous Path-integral Formula for Quantum Spin Dynamics via Planar Brownian Motion

نویسنده

  • BERNHARD BODMANN
چکیده

Adapting ideas of Daubechies and Klauder we derive a continuum path-integral formula for the time evolution generated by a spin Hamiltonian. For this purpose we identify the finite-dimensional spin Hilbert space with the ground-state eigenspace of a suitable Schödinger operator on L(R), the Hilbert space of square-integrable functions on the Euclidean plane R, and employ the Feynman-Kac-Itô formula.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A rigorous path integral for quantum spin using flat-space Wiener regularization

Adapting ideas of Daubechies and Klauder [J. Math. Phys. 26, 2239 (1985)] we derive a rigorous continuum path-integral formula for the semigroup generated by a spin Hamiltonian. More precisely, we use spin coherent vectors parametrized by complex numbers to relate the coherent representation of this semigroup to a suitable Schrödinger semigroup on the Hilbert space L2(R2) of Lebesgue square-int...

متن کامل

ua nt - p h / 97 03 03 1 v 1 1 8 M ar 1 99 7 Wiener Integration for Quantum Systems : A Unified Approach to the Feynman - Kac formula ∗

A generalized Feynman–Kac formula based on the Wiener measure is presented. Within the setting of a quantum particle in an electromagnetic field it yields the standard Feynman–Kac formula for the corresponding Schrödinger semigroup. In this case rigorous criteria for its validity are compiled. Finally, phase–space path–integral representations for more general quantum Hamiltonians are derived. ...

متن کامل

Wiener Integration for Quantum Systems: A Unified Approach to the Feynman-Kac formula

A generalized Feynman–Kac formula based on the Wiener measure is presented. Within the setting of a quantum particle in an electromagnetic field it yields the standard Feynman–Kac formula for the corresponding Schrödinger semigroup. In this case rigorous criteria for its validity are compiled. Finally, phase–space path–integral representations for more general quantum Hamiltonians are derived. ...

متن کامل

Master and Langevin equations for electromagnetic dissipation and decoherence of density matrices

We set up a forward – backward path integral for a point particle in a bath of photons to derive a master equation for the density matrix which describes electromagnetic dissipation and decoherence. We also derive the associated Langevin equation. As an application, we recalculate the Wigner-Weisskopf formula for the natural line width of an atomic state at zero temperature and find, in additio...

متن کامل

Path Integral Representation for Schrödinger Operators with Bernstein Functions of the Laplacian

Path integral representations for generalized Schrödinger operators obtained under a class of Bernstein functions of the Laplacian are established. The one-to-one correspondence of Bernstein functions with Lévy subordinators is used, thereby the role of Brownian motion entering the standard Feynman-Kac formula is taken here by subordinated Brownian motion. As specific examples, fractional and r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999